
energy transport due t o  conduction and thermal radiation in a unidimen- 

sional configuration. The boundary conditions asswed' correspond t o  

two para l le l  w a l l s  of given tem>e-atures separated by a f i n i t e  slab of 

gas. 

cients of emission and absorption are independent of frequency; the 

theory of conduction i s  based on t,he Ehatnagar-Gross-Krook model of 

A gray-gas thegry of radiztion i s  employed in  which the coeffi- 

f 
\ 

the  Boltzmam equation. Under simplifying assumptions, the haU-range 

V 

form of the equations i s  modif ied through the use of relations drawn 

from continuum theory. Eeat f l u  is predicteci Tor a l l  values of opt ical  

thickness or inverse Knudsen number. Comparisons with available numer- 

i c a l  calculations based on less res t r ic t ive assumptions indicate the  
- 

flilxes are given with a maximum error of a f e w  percent yet are express- 

ible  analogously i n  algebraic form. The correspondence between w a l l  

accommodation and emission coefficients i s  exhibited. In the concluding 

section, generalization t o  other configurations yields expl ic i t  formulas 

for  heat f l u x  between coaxial cy1:nders a ~ d  concentric spheres. 
@ 
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INTRODUCTION 

The theoretical  prediction of the rate  of transfer of thermal 

energy through a gaseous medium contained between parallel w a l l s  of 

different temperatures and s b c i f i e d  physical properties is a funda- 
--_I 

mental problem i n  the st& of heat exchange. In the theory of heat 

conduction in a monatomic gas one m y  try t o  determine the dependence 

of energy f lux on the two w a l l  temperatures, their  distance apart, the 

mean f ree  path length of the gas particles, and the accommodation 

coefficients of the walls. EFmi la r ly ,  in  radiative transfer through 

an absorbing and emitting gray gas, the energy f lux depends again on 

the wall temperatures, distance apart, the radiation (or photon) mean 

free path length, and on the coefficients of emission of the walls. 

The present note shows how, under simplifying assumptions, the f l u  in 

both cases can be predicted t o  a rather remarkable degree of accuracy 

/ while at the same time preserving formal similari t ies between the 

principal equations f o r  conduction and thermal radiation. 

Insofar as giay-gas radiation is concerned, the basic equations are 

w e l l  defined; the main contribution here i s  the demonstration of an' 

effective use of the assumption of small mean free path length in the 

half-range form of the equations. Predictions of flux are theq shown 

t o  possess reasonable merit fo r  all optical  thiclrnesses even though a 

portion of the analysis is  limited t o  simplification inherent in the 

continuum or Rosseiand regime. 

. The exact description of heat conduction fo r  a gas with arbitrary 

mean free path length relies on some formulation of the BoltzmRnn equa- 

t ion.  The analogy t o  be developed resul ts  f r o m  the use of the B-G-K 
. .  

I 
4 

* f  
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model (Bhatnagar, Gross, and Krookl) and half-range representations of 

the distribution function are employed. Once the similarity between the 

two problems is  established one is  led naturally t o  the consideration of 

proper use of the continuum farm of the conduction equations. The 

stratagem used in the radiation analysis, that is, proper employment 

of continuum theory, indicates the procedure and comparisons with more 

accurate calculations show tha t  t he  predictions remain good fo r  rarefied'  

gases, tha t  is, in the Knudsen reghe  of large mean free path length. 

It is important t o  stress t h a t  the close analogy achieved here holds 

principally when attention i s  concentrated on flux. 

butions, fo r  example, are not the same in the two problems. Also, the  

distributions predicted by the approximate analysis are h both cases 

increasingly inaccurate as the walls are approached. It appears that 

flux is the grossest of the physical quantities of interest and is  

Temperature distri- 

< insensitive t o  approximations. More localized phenolllena, such as t e m -  

perature "slip" at the walls, react much more sharply t o  imposed 

approximations. 

proper trends and extensions of the method become apparent. 

b l i t a t ive ly ,  however, the predictions provide the 

* NOMENCLATURE: 

a 

f 

F '  

h '  

I 

constant introduced in B-G-K model (Eq. ' (  16) ) 

distribution function 

Maxwellian distribution (Ed. (17)) 

heat flux (Eqs. (5) and ( 2 9 ) )  

specific intensity of radiation (EQ. (i)) 
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pxx 

T 

V 

VX 

X 

P 

€ 

e 

h 
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Boltzmann constant 

heat conduction coefficient 

distance between plates 

particle mass 

particle number density 

x x  component of pre~sure  tensor ’ 

temperature 

particle velocity 

x component of particle velocity 

coordinate measured normal t o  w a l l  

emission function (Eqs. (2)  and (30)) 

w a l l  emission or accommodation coefficient 

angle relative t o  x axis 

particle o r  photon mean free path 

COB 8 

Stefan-Boltzmann constant 

Subscripts 

1 

2 

M 

KN 

w1 

w2 

value i n  gas at 

value i n  gas at 

Maxwellian value 

Knudsen value 

x = t = , o  

EL x = L , F , =  
t 
I 

value at left wall 

value at right wall e 

ir 
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Superscript 13 

+ 
- 

half-range value, 0 < ci r; 1 for  radiation, 0 

half-range value, -1 < p c 0 fo r  radiation, vx < 0 for conduction 

vx for conduction - 
- c 

m s 1 s  
B 

A s s u m ,  as in  Fig. 1, two walls w i t h  temperatures and Tw2 at 

a distance apart L. In t h i s  schematic representation of the problem, 

conduction and radiation can be indicated simultaneously and, since alge- 

braic similarity is  t o  be featured, the same symbols w i l l  be used in the 

two cases. Thus, the pararae%ers 61 and E 2  represent e i ther  the wall 

accommodation coefficients of heat conduction or the wall emission 

coefficients for  radiation. 

fo r  photon or particle mean free path the local value 

also that the walls emit and reflect  the incident energy diffusely. 

The gaseous medium between the walls has 

h.  We assum 

Radiative Transport 

Consider, first, the transport of thermal radiation between the 

w a l l s .  Distance x is  measured normal t o  and from the left  wall. 

lhtroduce now the specifk intensity function which denotes the energy 

transmitted through a unit area (normal t o  the axis) in a u n i t  time 

and in a unit  solid angle that is inclined at 821 angle 

positive x direction. 

-7t/2 

€I t o  the 

We distinguish the half-ranges (-a/2 < - -  €I 5 a/2, 

A - €I 6 d2) of the specific intensity by the notation - 

c 
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where p = cos 6 and dE = d x / h ( x ) .  The basic transfer equations are 

( see, e. g.) KourganofP, ,p. 25 e t  seq.) 

P(dIf/dE) = -I%,O + [P(E)/JrI  (2) 

The function j3(E)/x. is the so-called source (or emission) function. 

In the absence of scattering and under the assumption that the index of 

refraction of the gas i s  unity, the condition of local themdynamic 

equilibrium yields the relation P ( 6 )  = & ( E )  where Q is the Stefan- 

Boltzmann constant. 

Approximation in the method of solution is introduced at this  

point. Firs t ,  one notes that the source function as well as the 

boundary conditions, developed la ter ,  are independent of p when the  

w a l l s  e m i t  and ref lect  diffusely. 

p ( p , E )  on p is  suppressed by means of aa appropriate averaging. One 

rational way in which t h i s  averaging can be achieved involves taking, 

f irst  moments w i t h  respect t o  p in  the half-ranges. It suffices here, 

however, t o  assme some such operation has been carried out and t o  

rewrite Eqs. (2) in  the form, 

As a consequence, the dependence of 

,. 

where the average value 

The quantities 

is  yet t o  be determined. 

h+(E) and h'(S) are now introduced t o  denote the 

half-rmge energy fluxee associated with the motion of photon6 in the 

positive and negative x (or 6) directions, respectively. Then 
n 



Total flux, so defined that it is positive when the net f loy of energy 

in the x direction is positive, i s  h( E) where 

From EQS. ( 3 )  and (4)  one derives the relations 

Addition and subtraction of E q s .  (6) together w i t h  the definition 

introduced in Eq* ( 5 )  yields 

For the problem being considered, conservation of energy requires that 

and the fundamental equations, arq 

# 
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Equation (9a) is  independent of the approximation we have employed 

0 

and the arbitrariness in the choice of appears only in the second 

relation. %e decision as t o  what value’to assign t o  is  now 

resolved by insisting that Eq. (9b) must agree w i t h  the expression fo r  

f l u x  in the limiting rep;- of a n  optically thick medium. 

assumption fixes the value 2c = 4/3 since independent study (e  .g. , 
Kourganoff2) of radiative transfer for  h << L leads t o  the condition . 
dp/dS = -3h/4 at any point 

This f i n a l  
*’ 

5 sufficiently distant from an imposed 

w a l l  o r  boundary condition. 

on the use of isotropic specific intensity, that  is, no dependence of 

I?l(p,S) on p, we retain a certain logical consistency by adjusting the 

arbitrary constant t o  conform w i t h  a regime in which the isotropic con- 

dit ion does apply. Very accurate numerical solutions are avaihble’ ?or 

Since the approximate analysis i s  based 

special values of the physical sarameters, and an 2 posteriori check of 

the resul ts  fo r  these cases w i l l  be given la te r .  

/ 
I I 

pl 

The boundary conditions express the equality of outwardly directed 

flux at each wall to the sum of the wall emission and the reflected 

portion of the inwardly directed flu at the wall. Since the reflec- 

t i v i t y  coefficient of an opaque wall is  1 minus the absorptirm (or 

emission) coefficient, on: has 

d 
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Here, subscripts 1 and 2 refer t o  conditions in  the medium at x = 0 

and x = L and subscripts wl and w2 refer t o  -11 conditions at the 

13- positions. Combination of these relations leads t o  

Equation (11) retains half-range fluxes but from Eq. (8) it can be 

written alternatively as 

The integration of Eqs .  (9) subject t o  the boundary.conditions is  

now a straightforward process. "he constant value of flux, h, i s  inde- 

pendent of S and a function only of the parameters 'J& T,,, EL, c2, 

and the optical  thickness EL where EL = .&L h-l(x)dx. When 

and is  the heat flux 8660- 
4 4 

€1 = €2 = 1, 6, = 0, flux i s  UTWl - QTw2 

ciated with black wall conditions, The end results IIBJ be written in 

the form 
I 
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Equation (13) gives a l inear expression fo r  the emission function 

and represents a rough approximation t o  the actual distribution of 

&(E). Equation (15) is the  principal objective of the analysis. 

accuracy, when compared with.available and more exact numerical calcu- 

Its 

6 
4 lations,  is surprisingly good. Figure 2 shows h/(aTw1 

function of 

(€1 = €2). 

dashed l ines  were taken from the work of Heaslet and Fuller3 where an 

- flWz4) as a 

EL and d for  the case of physically similar walls 

Solid l ines  correspond t o  the predictfons of Eq. (15). The 

i te ra t ive  method was used t o  solve the basic Mtegral equation of 

radiation theory for  the s a m  boundary conditions. 

previously noted tha t  fo r  black walls (61 = €2 = 1) the agreement with 

an exact numerical analysis carried out by Usiskin and sparrow5 is 

Probstein4 has 

quite satisfactory. The topmost curve is Probstein's resu l t .  

Conductive Transport 
c 

Heat conduction between'the walls and: through a mnatomic 'gas ' ' ' '  ' 

remains t o  be condidered. If Eqs . (8) 

(10) are  accepted as fundamental t o  the prediction of heat flux, a 

(9),  and the boundary, conditions 
I 

parallel development is possible. 

forms of the kinetic equations need t o  be introduced. 

Preliminary t o  th i s ,  the  specific 
a 

The B-G-K1 idealization of the  B o l t z ~  equation f o r  the present 

problem can be expressed as 

v,(df/dx) = ( a J / h ) ( F  - f )  (16) 

* where 

F = n(m/21dr~)3/2 exp( -mv2/m) (17) 
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(For a valuable cri t ique of t h i s  idealization see Liepmann, Naras imha,  8 

and Chahinee6) The quantity vx i s  the x component of par t ic le  

velocity v, and C I s  the average par t ic le  velocity f o r  the Maxwellian 

distribution, F. The quantity A is related t o  the  par t ic le  mean free 

path length, also based on F, ant€ a is a proportionality constant 

t o  be determined by requiring the solution f o r  heat flux t o  be exact 

at  the continuum l i m i t .  Thus A and a may be functions of n and T 

for  arbi t rary intermolecular force l a w s .  

c 

The values of n,T 

terms of moments of the 

n = Jf 

and other quantities of interest  are given in 

distribution function f by the  re la t ions 

d?. (number density) ' (1W 

pxx = Jxnvx2f d; (xx component of pressure 
tensor) ( 18c 1 

(3/2)nk'p = s( 1/2)mv?f d';f ( internal  energy density) (la) 

I 

h = J( 1/2)mvxv9 d';f ( t o t a l  energy flux) ( 1 8 4  

. Upon multiplication of Eq. (16) by the appropriate col l is ional  invar- 

iant  (1, mvx, or  mv2) an2 integration Over particle velocit ies,  we 

get the conservation equations a j/h = 0, &)=/ax = 0, ah/& = 0 

Noting that j is  zero at the walls, these can be written 
, 

j = o  ( 1 9 4  

pxx = const = force per unit  k e a  on walls (1%) 

h = canst 
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The kinetic tbeory counterpart of the foregoing simplified treat- 

> 

ment of radiative transport entai ls  the definition of two  half-range 

distribution functions f* for particles w i t h  positive or negative 

values of' vx, and the two qistributioas are taken t o  be Maxwellian, 

that is ,  

Substitution of t h i s  into Eqs. (18a) t o  (18d) yields 

pxx = nkT+ + n-kT- = codst 

+ +  nkT = n kT + n-kT' = pxx 
6' 

( 21c )' 

, The equalit ies on the right follow from the use of the conservation 

relations (lga),  (1%) and from combbation of (21c) w i t h  (2l.d). 

The following simplified treatment of the kinetic theory heat 

conduction problem can be cast in  a form that  is independent of the 

. intermolecular force l a w .  To that end, we choose a definition of A 

based on the heat conduc&on coefficient and the hard sphere mean free 

path, hs = (& Ad%)'1 where d i s  par t ic le  diameter. For hard 

sphere 8 , the heat conduct ion coefficient is 

see mapan and ~hwling,7 chapter 10. Alternatively, an approximate * . . a  

evaluation of the numerical coefficient taken from Jeanse leads t o  



The difference between the two expressions is less than 1 percent, and 

we shall adopt the l a t t e r  because of i t s  more compact form. 

l a t e r  developnmt the parameter 

evaluated by consideration of the form of the equations in the continuum 

In a 

a appearing ih Eq. (16) w i l l  be 
- - . - -_ - - 

l i m i t  corresponding t o  vanishingly small mean free path. It can be 

seen that t h i s  procedure is  independent of the form of the intermolecular 

force l a w  if an effective mees f ree  path is defhed as 

A = ( K/KHs)~Hs = K/( 15/4 )3m( 2kT/ltm) l" (22) 

where K is  the continuum heat-conduction coefficient. If momentum 

transport were considered, a separate effective mean f ree  path would 

have t o  be defined fo r  that case, but in the present conduction problem 

t h i s  i s  not necessary. 

It is of interest  t o  compare our effective mean free path for  

conduction, Eq. (22) , w i t h  values that have been used i n  the l i t e ra ture .  

For Maxwellian 

where A 2 ( 5 )  = 

force l a w .  I n  

molecules, the heat -conduction coefficient is7 

KM = [ 5/4~tA2( 5) 3 ( 2 / m 1 ~ )  ''2 k2T 

0.436 and K 

the study of heat f low by Zieringl' the solution for  

is the  constant in  the inverse f i f t h  power 

Maxwellian-molecules is expressed in terms of a mean free path h~ 
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The heat-conduction coefficirint can be expressed in  terms of t h i s  parameter. 

as 

’(M = (-&/2)(2k!P/m)’’* 

By substitution in’Eq. (22)) we f ind 

When expressed i n  terms of A, our results are independent of the 

form of the intermolecular force l a w .  However, for  comparison with 

experiment or other results in the l i terature  t h i s  factor must be con- 

sidered. For example, hv3n and Zavilandll define Ibudsen numbers for  

hard spheres and Maxwellian molecules in terms of an average density 

It is  apparent that  

walls, which can be inferred from experimentally measurable quantities. 

6 is a measure of the ampunt of gas between the 
,- 

The solution t o  be given later is  expressed i n  terms of the variable 

which is  related t o  x and A by 

f ,  
I O  

or  

Rearrangement 

yields 

and substitution of E@. (22) and (24b) into Eq. (23) , 



-15- 

The solution t o  be given Later leads t o  a temperature distribution 

When the heat-conduction coefficient 

T, the average density can be evaluated according t o  Eq. (25). 

T( E ) .  

K is specified a8 a function of 

" /  Through use of Eq. (&be):, Eq . (16) becomes 

vx(df/d{) = a?(F - f )  (26)' 'J 

The half-range energy fluxes are, respectively, 

and t o t a l  flux h( E )  is  

. Conformity between the present analysis and the approximate theory used 

previously is  preserved if Eq. (27) is rewritten as flux equations 

with an appropriate averaging in velocity space. 

- - _ _  - - - - - -  ----- __ 

- ._ 
- - - - . .. 

Thus, if Eq. (27) 

is  multiplied by mxv2/2 and integrations carried out mer the half- 

range par t ic le  velocities,, 

. 
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where 

of the differential equations are yet t o  be fixed. 

with Eqs. ( 6 )  is obvious and, as in Eqs. (7 ) ,  combination of the flux 

J3( = )  = nkT(2kT/3(m)1'2 and the coeff cients A the lef.. members 

The direct analogy 
. k  

equations yie.lds 

As noted in Eq. ( lgc) ,  total f lux  is  constant, so 

and the fundamental equations become 

Y 
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Precision i n  the statenrent of the latter relation now appears if,  

as previously, one expresses it in conformity w i t h  the dictates of 

continuum theory and small mean free path length. With the aid of 

Eqs. (21c) and (2l.d) @ can be expressed as 

where pxx is constant. Differentiation and rearrangement leads t o  

The quantity dT/dg can be elimbated in favor of h by use of the 

continuum relation h = -K(dT/dx). 

remove 

By substitution of Eq. (22) t o  

K, and use of Eq. (24b), we get 

h = -( 15/4)nk( 2 k T / ~ C m ) ~ ' ~  (dT/dE) 

I 

Combination of this with the expression fo r  dp/dg abuve yields 

@ ( E )  is a linear function fo r  radiative transport and 

linear function fo r  conductive transport. 

T1/2(tj)  is a 

$ 

P 
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It remains t o  introduce the boundary conditions. More detailed 

consideration is  required than was used ear l ie r  in  Eqs. (lo) 

these conditions as 

We write 
*’ 

+ 
f l  (vx,v) = W w ,  + (1 - E l ) f l - ( - V X , V )  9 vx > 0 (374 

f I 
Here, f l  and f 2  

evaluated, respectively, at the  wall positions. 

are the half-range distribution functions in the gas 

The distribution func- 

t ions associated with diffuse emission at (the walls are e . I .  , L r A  ‘. 

Fw2 = A2( m/2xkTw2) 3’2 e a (  -w2/2kTW2) ( 3 b l  

where ql and Tw2 are the two walltemperatures. The values of A 1  

and A2 are yet t o  be determined; the parameters r’ €1 and €2 are the 

wall accommodation coefficients . 
The caunte-s of Eqs. (10) are I 

h l  + = E1kAITW1( 2kTw,/nm) l / 2  - (1 - €l )h l -  

-h2- = €2kA2TW2( 2kTw2/Jfm) + (1 - ~ 2 ) h ~ +  

Through the use of Eq. (32), one has 

39 + I32 - 81 
3 f2  1 / 2  

h (& + 1 €2 - 1) = (is) (AlTwl - A2Tw2 

The solution of the different ia l  Eq. (36 )  is expressible as 

(394 
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From the boundary conditions one gets 

b =  

h =  

The final relation gives f lux in terms of 

t e r i s t i c s  but a difference exis ts  here between 

In the l a t t e r  case the emission from the walls 

the w a l l  emission charac- 

conduction and radiation. 

is purely a function of 

wall temperature. one di8fdngUishhg difference is  associated w i t h  the 

fact that photons need not be conserved in absorption and emission at 

the walls. 

fo r  the gas particles,  and the parauheters 

by barn relations. 

Thus, a more detailed balancing of conditions is necessary 

A1 and A 2  are constrained 

.- The additional calculations are most easily carried 

out if a perturbation analysis is  used i n  which the percentage change 

in  temperature i a  not excessive. To t h i s  end we introduce 

AI = ( I S J ~  - q 2 ) / 2  and assume m / [ ( 1 / 2 ) ( ~ ~  + %,)I < 1. 
From Eqs . (2la) and (21b) 

'T( a )  = CYt( S)T'( E )  ].1'2 

6 

3 
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Temperature is therefore equal t o  the geometric mean of the half-range 

tenrperatures. 

tha t  the geometric and arithmetic means can, t o  a first order, be 

equated, one has 2T( E )  z [T+( E)T'( 

If' the deviat2ons in the temperatures are small enough 

+ [T+( E )  + T'( 5)1/2 and 

Multiplication by vx and integration of Eqs .  (37a) and (37b) over . 

the half-range velocity spaces leads Lo 

Equation (43) is  then rewritten as 

Further reduction is poss'ible through use of the relations 

pxx = kn(O)T(O) = kn( SLIT( EL) = const 

( d 1 5 ) ( k  - td2) pn[2kT( k) / ro~n] ' '~  - &[2k9( SL/2)/rrml 112 

the l a t t e r  expression being merely a re-expression of -6. (41) and 

(35) . Equation (47) then becomes 
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I '  
i 

. .  h =  

15 

It is convenient at th i s  point t o  introduce the Knudsen flux, 

hm, which applies at 61 = ~2 = 1, SI; = 0. Under these conditions 
I 
I 

I T+( E) = Glr T'( E) = Tv2, and direct  calculation yields 
I 3 

To the order of accuracy of the present analysis these results are 

indistinguishable but we sha,ll use the first $n view of its  more . I , . . h .  

straightforward derivatibn. 

hlgdbraic manipulation of Eq. (48) now leads t o  the resul t  1 
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I ’  

!bo  formulas of interest  follow from t h i s  relation. 

tha t  since a) is  a linear function the bracketed terms are, 

F i r s t ,  we note 

respectively, 

. When €1 = e2 = B it may be conjectured t h a t ,  the ra t ios  of the averaged 

wall temperatures and the averaged gas temperatures at  the w a l l .  are 

nearly 1. In t h i s  case, one gets 

‘ 1  
Second, more rigorously, we can res t r ic t  the analysis t o  a first-order 

theory involving the small parameter 2AT/(Tw, + Tv2) Esuation (50) a 

then reduces t o  

*/ 

, I  

hcN h =  
45L 
15 
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I/ 

This l a t t e r  expression is precisely analogous t o  radiation f lux given 

Fn Eq. (15). The role of hm, which is h evaluated at €1 = €2 = 1, 

e 

E, = 0 is the same as that of black body flux oT,f -  UT^,^; the '/ 
difference in the coefficients of EL i s  attributable t o  the coeffi- , 

cients appearing in the continuum forms of the transport equation$. 

Figure 3 shows a comparison ht;ween t h i s  result  and detailed calcula- 

t ions of Gross and Ziering' fo r  

lence is  not as good as that shown in Fig. 2 and, in view of the added 

simplifications used t o  achieve th i s  expression, the difference is  not 

61 = €2 = 1. The degree of excel- 

surprising. 

curve fails t o  conform with the more nearly exact calculations. 

In particular, the start ing slope of the approximate 

The 

usefulness of the result  i n  pedict ing the mgnitude of flux is, 

however, apparent . 
Figure 4 shows a comparison between predictions of sl ip temperature 

T,. By definition, when €1 = €2 = €, 

and in the present approximate theory one has 

The compsrisons were made t o  correspond t o  the results of Gross end 

Ziering,' and neceesaxily were applied a t  € = 1. 
- __ _ _ _  _ _  __ . _- _ - - - -  ------ 

I 

I 
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CONCLUDING REMARKS 

The preceding analysis has Ghown that heat flux may be calculated 

approximately through a simplified analysis i n  which different ia l  equa- 

tions from continuum theory are solved subject t o  boundary conditions 

involving temperature discontinuities at  the wal ls .  It is also possible 

t o  characterize the final results i n  another way. To t h i s  end we l i m i t  

attention t o  fixed values of mean free path A. Then one notes that the . 

predicted heat flux has the form 

I 

~ where A and B are associated, respectively, w i t h  the extreme conditions 

h >>1 and h <<1. If th i s  restatement of the end result  i s  given a 

definit ive status,  generalizations t o  other cases become possible so long 

I' as A is provided by a free-molecule or opticaJly-thin analysis and B 

can be, calculated from continuum theory. 

Eq. (53) is  correbt for l/h large and the magnitude of h is exact a t  

The asymptotic behavior of 

l /h  0. The one-dimensional analysis and Figs. 2 and 3 indicate that 

the region of l ea s t  accuracy w i l l  appear a t  moderately small values of 

mean free path length where distance is, of course, measured in  terms of 

a characterist ic geometric length. 

* 

Two additional results follow immediately. Consider, f i r s t ,  two 

coaxial cylinders with radii R1, & (I31 < Rp) temperatures Twl, TW2, 

and accobda t ion  coefficients o r  emissivities e l r  e2. If h 1  is heat 

flux at the inner cylinder one has 
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RADIATION 

In  Eq. (%a) the value at h = 00 is provided by Christiansen's formula 

as discussed, for  example, by Jakob,lz page 5, or by Jensen.= A deriva- 

t ion of the corresponding term in Eq. (54b) can be found, for example, 

in  Kennard.l* The logarithmic terms ar ise  from the fact  that  the con- 

tinuum equations in cylindrical geometry require flux h t o  vary inversely 

with radius. 

Consider, next, two concentric spheres with radii R1, R2 and, again, 

l e t  hl be heat flux at the inner surface. Equation (53) then yields 

Christiansen's formula again provides the appropriate relation i n  

Eq. (55a) 2br spherical. geometpy the continuum theory requires h t o  

vary inversely as radius squared& 

It is t o  be noted that when & - R1 = L and R2 increases 

indefinitely the above results reduce t o  the formulas derived previously 

for t he  case of para l l e l  d s .  When '€1 = c2 = 1, Eq. (54b) reduces to 
f f  
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a form derived by Lees and Liu.ls A further specialization of in te res t  

also follows from Eqs (55)  , wmely, the case of a single sphere con- 

ducting o r  radiating t o  an inf in i te  gaGeous =dim. Here the external 

radius R2 becomes a rb i t ra r i ly la rge  while R 1  is held fixed. A finite, 

nonzero value of flux is  predicted. In the idealized case of the cylin- 

d r i ca l  geometry o r  i n  the purely one-dimensional configuration the theory 

predicts zero f lux  fo r  f in i t e  values of TV1and Twz when the distance 

between the w a l l s  becomes inf in i te .  This anomalous behavior stems from 

the change i n  the steady-state continuum equations as the dimnsionality 

of the configuration changes. The differences between the single sphere 

and the other cases are closely analogous mathematically t o  contrasting 

resu l t s  that arise in attempting t o  predict the drag of the s a m  geometric 

shapes i n  a Stokes f l o w  analysis. The la t ter  analysis, however, is based 

on additional idealizations of the basic physical equatidns. 

<’ In a direct  derivation of Eqs . (54) and (55)  by the methods of t h i s  ’ 

paper, the recasting of the different ia l  operators in  the governing 

equations of fer6 do di f f icu l ty  . The boundary conditions require mre 

detailed investigation, however, and the i n i t i a l  study of the finite slab 

. shows that  the kinetic theory analysis is the mre d i f f i cu l t  t o  carry 

through and should be limited t o  smal l  temperature differences. 
6 

The 

approach adopted here i s  essentially one of demanding that the boundaxy 

conditions must be exact for  limiting values of A .  

thus an interpolation formula w i t h  known end conditions. 

ment would involve Increased acckacy i n  the prediction of the gradient 

dh/c~~-’ at A-’ = O. 

Equation (53) is 

Further improve- 
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The attainment of an acceptable analogy without great loss i n  

accuracy of predictions has been the theme of t h i s  paper and was the 

motivation fo r  the investigation. 

the first-order predictions ,of temperature distribution are of con- 

siderable value as starting points for m r e  exact i t e ra t ive  calculations. 

It is important, also, t o  s t r e s s  that 

It is  not possible t o  maintain a continuing analogy, since differences 

appear i n  the character of the influence functions i n  the integral- 

equation formulations, fo r  example, but t h i s  does not detract  fromthe 
6 

u t i l i t y  of the first-order results. Two recent investigations may be 

mentioned i n  which predictions from a continuum-oriented theory are used 

t o  calculate more exact results. The first of these is the work of 
3 Heaslet and m e r ;  radiative transport and temperature distributions , 

between pa ra l l e l  plates  are determined i terat ively,  starting w i t h  the 

approximation of the emission f h c t i o n  given in E!q. (13 ) .  

Liepmann, Narasimha, and ChahineG the structure of a plane shock layer 

In the work of 

r' 

is  studied by means of the B-G-K model. Success in  carrying out an 

i te ra t ive  calculation was attributed i n  part  t o  the use of the Navier- 

Stokes equations t o  ge t  a s tar t ing solution. This approach is consistent 

. with the type of approximation we.  have advocated here. . I , . r l *  

The methods used inbthe derivation of the  present approximate 

solutions can be generalized i n  other directions.  For example, it may 

be possible, by slight modifications, t o  include complicating factors 

such as simultaneom transport by radiation and conduction in  gas mixtures 

including polyatomic molecules. 
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FIGURE LM;EM)S 

Fig. 1. - Sketch showing parallel walls separated by gaseous medium. ' 

Fig .  2 . -  Dimensionless radiative flux between similar walls as a function 

of wall emissivity and optical thickness. 

Fig. 3 . -  Dimensionless conductive flux as a f'unctim of iwerse Knudsen 

number, €1 = €2 = 1. 

F i g .  4 . -  Dimensionless temperature slip as a function of inverse Khudsen 

number, €1 = €2 = 1. 
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